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Abstract

When driving or playing sports, despite the presence of
non-deterministic factors, the brain is required to reliably
estimate the positions or velocities of objects to plan for
subsequent actions. In the literature, with Bayesian as
the mathematical framework and probabilistic population
code (PPC) as the neural representation model, neural cir-
cuits for computations such as multi-sensory cue integra-
tion and odour identification have been discussed; how-
ever, less attention has been given to comparisons with
alternative neural representations, such as the sampling-
based code, especially, for inference problems that are
time-variant in nature. In this work, with the motivation
of exploring neural probabilistic inferences and specific
focus on inferences of time-varying quantity estimations,
plausible neural circuits derived based on the PPC and
sampling-based code are examined. Based on numeri-
cal comparisons, it is found that, with less constraints on
the form of probabilistic functions being represented, the
sampling-based code is an efficient alternative to the PPC
for modelling neural approximate Bayesian inferences in
estimation problems.
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Introduction

There has been a range of studies on probability representa-
tions and inferences utilized by the brain for optimizing de-
cisions. As noted in the review of (Pouget, Beck, Ma, &
Latham, 2013), among different neural representation propos-
als, two of them, originated with very different assumptions,
are the probabilistic population code (PPC) and sampling-
based code. The former assumes the neural activities of a
population of neurons collectively encode parameters of prob-
ability distributions, while the latter assumes neural activities
represent sampled values drawn from underlying probability
distributions (Pouget et al., 2013). The fundamental differ-
ences in these proposals set an interesting background for de-
signing numerical comparisons to explore their inherent prop-
erties in higher-level inference tasks.

With the focus of examining marginalization computations
implemented by the brain, based on the linear PPC proposal,
neural dynamics that approximate the Kalman Filter (KF) for
position estimation problems are derived in (Beck, Latham,
& Pouget, 2011). Motivated by the discussions in the paper,
this work further explores neural computation models for time-
varying quantity estimation problems.

In the literature, the sampling-based proposal has been
studied and compared with the PPC proposal for general per-
ception and olfaction inference problems; however, less at-
tention has given to quantity estimations — inferring quanti-
ties based on noisy sensory information. In (Fiser, Berkes,
Orban, & Lengyel, 2010), for general perception problems, the
feasibility of implementing short-term inference and long-term
learning based on the PPC and sampling-based proposals are
discussed. It is concluded that the sampling-based code is
more efficient for encoding arbitrary probability distributions
and is more suited for learning. In addition, in (Grabska-
Barwinska, Beck, Pouget, & Latham, 2013), for olfactory in-
ferences, it is found that these two neural representation mod-
els lead to similar demixing performance but different odour
concentration predictions. Along this line of exploration, with
the formulation in (Beck et al., 2011) as the starting point,
this work provides insights into low-level neural computational
models specific to time-varying quantity estimations, and ex-
plores the differences of the PPC and sampling-based pro-
posals in this class of inference problem.

Computational framework and models

Bayesian inference is a framework that can characterize the
complex computations carried out in the brain (Pouget et al.,
2013). For estimation problems considered in this work, the
general model of Bayesian inference (i.e., the Bayes Filter) is
of the following form
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where s is the vector of quantities (or, stimuli) to be inferred,
r is the vector of activities of a neuron population, and 1 is
the normalization constant (Beck et al., 2011). For neural im-
plementations, the propagation component p(s(z)|s(r — Ar))
is realized with the assumption that the brain itself has an in-
ternal dynamic model that provides a prior estimation of the
stimuli (Wolpert, Ghahramani, & Jordan, 1995), the generative
component p(r(7)|s(¢)) is encoded by a population of neu-
rons (denoted by subscript ‘in’) to correct the prior predictions,
and the posterior p(s(z)|r(0), ...,r(¢)) is encoded by a second
population of neurons (denoted by subscript ‘out’) and is prop-
agated based the predictive and corrective steps described
above. With this structure as the basis, neural approximate
Bayes Filters based on the PPC and sampling-based code
are compared below.



PPC-based model

In (Beck et al., 2011), with the linear PPC, firing rate dynamics
for the following estimation problem is derived:

ds(t)

dt

where s(¢) is the position to be estimated and w(t) ~
A((0,62) is Gaussian motion noise, and o is a constant.
In this formulation, with Poisson activities and Gaussian tun-
ing curves, the populations of neurons encode observations
and posterior beliefs about s(¢) as Gaussian distributions
A(u(t),06%(t)). Given these assumptions, the neural activi-
ties in the output layer can be related to that in the input layer
as follows (Beck et al., 2011):
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where vy is the firing rates of the neurons in the output layer,
p;, and p,,, are the spike trains generated by the neurons
in the input and output layers, W = 2aj;uta£m +bj;utbgm and
M = a) a’ +b] bl and the a and b are parametrization
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Sampling-based model

Motivated by the Particle Filter algorithm in robotics applica-
tions, an alternative neural estimator with the sampling-based
code is derived. In this formulation, the activities of neurons
represent number of samples at their preferred stimuli. For
comparison purposes, by assuming vour = f (i (1), Tout(?)) as
in the PPC-based formulation, the output layer neural dynam-

ics can be modelled by
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where with s° denoting preferred stimuli and [ rep-

resenting a sensitivity measure from activities in the
input layer to the output layer, the matrices P;; =
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sen to approximate the prediction and correction steps in the
Particle Filter algorithm (Barfoot, 2017).
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Results and conclusions

For the numerical example in (1), the neural computational
models derived based on the PPC and sampling-based code
are compared against the standard Kalman Filter algorithm,
which provides the optimal solution to the Bayes Filter for this
linear estimation problem. As can be seen from Figure 1, in
comparison, the sampling-based code leads to estimations
closer to the optimal solution. With a closer look at the for-
mulations, this difference can be traced back to the derived
weights. For the PPC-based formulation, depending on the
choices of the parametrization vectors a and b, the output
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Figure 1: Root mean square (RMS) difference in estimation
mean and variance between the neural estimators and the
standard Kalman Filter for o = {0.5,2.0,4.0,6.0,8.0}.

neurons may be more sensitive to input neurons with very dif-
ferent preferred stimuli. This results in inefficient flow of in-
formation from the input to the output layer and hence less
optimal estimations. In contrast, for the sampling-based code,
with more flexibilities in representing probability functions, this
insufficiency is alleviated.

In order to further explore the robustness of these neural
estimation models, a separate set of numerical comparisons
is carried out to simulate the scenario where observations (en-
coded by the input layer) are temporarily disrupted (e.g., mo-
mentarily blocked vision when driving). It is found that, for both
computational models, the recovery time from the disruption is
on the order of milliseconds. When comparing the estimations
after the disruption, the sampling-based model has a slight in-
crease in error and some decrease in confidence, which are
consistent with day-to-day behaviour level observations.

The neural circuits discussed in this work are for the 1D
position estimation problem. For more general inferences, ad-
ditional layers of neurons can be included in the structure to
account for higher dimensions (Pouget et al., 2013) or decom-
posing the output layer into novelty and filtering layers to allow
for additional incorporations of control inputs (Kutschireiter,
Jean, & Pfister, 2015).
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