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• Platforms: Parrot ARDrone (source) and Parrot Bebop (target)

Fly as You Draw Experiments

• On average over ten test trajectories, the tracking error of the
target quadrotor is reduced by 74%.

• With online learning, overall target quadrotor performance is
comparable to the cases where the source and the target quadrotors
are enhanced by their own DNN inverse modules.

• Inverse dynamics models can be used to realize a desired robot
motion or enhance a robot’s performance.

• In [1] and [2], we used deep neural networks (DNNs) for learning
inverse dynamics to enhance the tracking of a single robot.

• We observed approximately 50%-60% performance improvements
on 30 arbitrary hand-drawn test trajectories.

Knowledge Transfer Results

Research Questions

Background

• If we have a DNN inverse module trained on
one robot, can we transfer the learned model
to enhance other robots in a team?

• How do we characterize similarity between
robots, and what is the implication of having
similar robots in the transfer problem?

Idea

• Quadrotors are expected to fly arbitrary trajectories generated
from hand drawings accurately in the first attempts.

Sample Test Trajectories

• Learn an online module for transferring the DNN inverse module
trained on a source robot to enhance a target robot

Black-Box Baseline Systems
• Consider source and target robot systems represented by

• The offline learning module (DNN) approximates the inverse of the
source robot system and is previously trained on a rich dataset:

• The online learning module provides finer adjustments to the
reference signal sent to the target robot system based on online data:

• Define and

Learning Modules

• Assume (i) stable inverse dynamics (minimum phase) and (ii) well-
defined and the same relative degree

Similarity Characterization

Stability

• Based on the state-to-output gain A and input-to-output gain B
of the systems, we propose a measure to characterize the dynamic
similarity between the source and target robots:

• Target robot system stability condition under online learning
uncertainties (see [3] for a proof):
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Bebop Baseline Bebop w/ ARDrone DNN Bebop w/ ARDrone DNN & Online Learning ARDrone w/ Own DNN Bebop w/ Own DNN

Avg. Error 0.54 m Avg. Error  0.29 m Avg. Error 0.13 m Avg. Error 0.14 m Avg. Error 0.15 m


