University of Toronto Institute for Aerospace Studies / Dynamic Systems Lab

Knowledge Transfer Between Robots with Online Learning for Enhancing Robot Performance in Impromptu Trajectory Tracking

Siqi Zhou, Andriy Sarabakha, Erdal Kayacan, Mohamed K. Helwa, and Angela P. Schoellig

Introduction

Background

• Inverse dynamics models can be used to realize a desired robot motion or enhance a robot's performance.

Similarity

Similarity Characterization

• Based on the state-to-output gain \mathcal{A} and input-to-output gain \mathcal{B} of the systems, we propose a measure to characterize the **dynamic**

DYNAMIC SYSTEMS LAB

• In [1] and [2], we used deep neural networks (DNNs) for learning inverse dynamics to enhance the tracking of a single robot.

• We observed approximately **50%-60% performance improvements** on 30 arbitrary hand-drawn test trajectories.

Research Questions

- If we have a DNN inverse module trained on one robot, can we transfer the learned model to enhance other robots in a team?
- How do we characterize similarity between robots, and what is the implication of having similar robots in the transfer problem?

Knowledge Transfer with Online Learning

Idea

• Learn an online module for transferring the DNN inverse module trained on a source robot to enhance a target robot

similarity between the source and target robots:

$$\begin{array}{l} \text{Similarity} \rightarrow S = \begin{bmatrix} 1 - \frac{\mathcal{B}_t}{\mathcal{B}_s} & \mathcal{A}_t - \frac{\mathcal{B}_t}{\mathcal{B}_s} \mathcal{A}_s \end{bmatrix} \end{array}$$

Stability

• Target robot system stability condition under online learning uncertainties (see [3] for a proof):

 $|\alpha| (||S_2|| + \beta_2) < \beta_4 / L_1$

Experimental Results

Fly as You Draw Experiments

• Quadrotors are expected to fly arbitrary trajectories generated from hand drawings accurately in the first attempts.

Black-Box Baseline Systems

• Consider source and target robot systems represented by

State $\rightarrow x(k+1) = f(x(k)) + g(x(k)) u(k)$ Actual Output $\rightarrow y(k) = h(x(k))$ Reference Signal

• Assume (i) stable inverse dynamics (minimum phase) and (ii) well-defined and the same relative degree r

• Define
$$\mathcal{F}(x) = h(f^r(x)) \text{ and } \mathcal{G}(x) = \frac{\partial}{\partial u} h\left(f^{r-1}(f(x) + g(x)u)\right)$$

Learning Modules

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5

Knowledge Transfer Results

• Platforms: Parrot ARDrone (source) and Parrot Bebop (target)

- On average over ten test trajectories, the tracking error of the target quadrotor is reduced by 74%.
- With **online learning**, overall target quadrotor performance is comparable to the cases where the source and the target quadrotors are enhanced by their own **DNN inverse modules**.

More Information

• The offline learning module (DNN) approximates the inverse of the source robot system and is previously trained on a rich dataset:

$$u_1(k) = \left(\mathcal{G}_s\left(x(k)\right)\right)^{-1} \left(y_d(k+r) - \mathcal{F}_s\left(x(k)\right)\right)$$

• The online learning module provides finer adjustments to the reference signal sent to the target robot system based on online data:

$u_2(k)$	$= \alpha e_p$	(k+r)
	Adaptation	Error
	Gain	Prediction

VECTOR

INSTITUTE

INSTITUT

VECTEUR

[1] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa and A. P. Schoellig, "Deep Neural Networks for Improved, Impromptu Trajectory Tracking of Quadrotors," International Conference on Robotics and Automation (ICRA) 2017. *Implementation of a fly-as-you-draw application*.

[2] S. Zhou, M. K. Helwa and A. P. Schoellig, "Design of Deep Neural Networks as Add-on Blocks for Improving Impromptu Trajectory Tracking," Conference on Decision and Control (CDC) 2017. *Guidelines for DNN module design – a general framework from control theory.*

[3] S. Zhou, A. Sarabakha, E. Kayacan, M. K. Helwa and A. P. Schoellig, "Knowledge Transfer Between Robots with Similar Dynamics for High-Accuracy Impromptu Trajectory Tracking," European Control Conference (ECC) 2019. *Transferring DNN inverse module across robots*.

> **DYNAMIC** SYSTEMS LAB www.dynsyslab.org

Institute for Aerospace Studies UNIVERSITY OF TORONTO