Deep Neural Networks as Add-on Modules for High-Accuracy Impromptu Trajectory Tracking

SiQi Zhou, Mohamed K. Helwa and Angela P. Schoellig

With contributions from Qiyang Li, Jingxing Qian, Zining Zhu and Xuchan Bao

Background & Motivation

- Goal: to achieve **high-accuracy** tracking for **arbitrary**, **feasible trajectories** in **one shot** (i.e., impromptu tracking)
- Challenges:
 - Uncertainties due to unmodeled dynamics and unknown effects from the environment
 - Tracking trajectories not known a priori
- Techniques from the literature and limitations:
 - PID controller for tracking parameters are difficult to tune for arbitrary trajectories
 - Adaptive control for parameter uncertainties past tracking experience is not efficiently utilized

Experimental Results

 In [1], the proposed approach was tested on quadrotor vehicles using 30 hand-drawn trajectories. An average of 43% tracking error reduction was achieved.

Samples of Hand-Drawn Trajectories

- Iterative Learning Control for high-accuracy tracking – experience does not generalize well to untrained tasks

Methodology

• Idea: Learning of an add-on module to enhance the impromptu tracking capabilities of a black-box control system

• Control architecture and training:

—		
0.5 [m]		

 In [1], inputs of the DNN module were determined through trial-and-error. In [2], training the DNN based on the theoretical results led to similar performance but with the DNN input dimension reduced by 2/3. 0 10 20 30 40 50 60 70 80 % Error Reduction

Error Reduction on 5 Trajectories

Trajectory Index	DNN with 36 inputs [1]	DNN with 12 inputs [2]
1	55.6%	52.4%
2	61.4%	48.4%
3	39.7%	42.0%
4	43.9%	46.6%
5	26.6%	36.9%
Average	45.5%	45.2%

Non-Minimum Phase Systems

• This approach cannot be directly applied to **non-minimum phase systems** (i.e., systems with unstable inverse dynamics).

Modification: Learning an approximate inverse of the baseline system by removing certain inputs from the DNN module — less information leads to better performance [3].

Theoretical Results

- The ideal control law that should be modeled by the DNN module is the output equation of the inverse dynamics of the baseline feedback control system.
- Generic feedback control system:

State $\rightarrow x(t+1) = f(x(t)) + g(x(t)) u(t)$ y(t) = h(x(t))Reference Signal
Actual Output

• Necessary inputs and output of the DNN module:

 $\mathcal{I} = \{ x(t), y_d(t+r) \} \to \mathcal{O} = \{ u(t) \}$ $\stackrel{\uparrow}{\underset{\text{Desired Output}}{\overset{\uparrow}{\text{Relative Degree}}}$

• Necessary conditions for effectively applying the approach: The **baseline system** must have (*i*) a **well-defined relative degree** and (*ii*) **stable inverse dynamics**.

• Additional insight: The inverse learning of the DNN module can be made more efficient if the baseline system achieves zero steady-state error for step inputs.

Long Exposure

More Information

[1] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa and A. P. Schoellig, "Deep Neural Networks for Improved, Impromptu Trajectory Tracking of Quadrotors," ICRA 2017.

Implementation details of the quadrotor experiments including DNN structure and training.

[2] S. Zhou, M. K. Helwa and A. P. Schoellig, "Design of Deep Neural Networks as Add-on Blocks for Improving Impromptu Trajectory Tracking," **CDC 2017**.

Guidelines for designing the DNN module – a general framework derived from control theory.

[3] ——, "An Inversion-Based Learning Approach for Improving Impromptu Trajectory Tracking of Robots with Non-Minimum Phase Dynamics," Submitted to R-AL and ICRA 2018. Application of the inversion-based learning approach to non-minimum phase systems.

