Knowledge Transfer Between Robots with Similar Dynamics for High-Accuracy Impromptu Trajectory Tracking

European Control Conference June 26, 2019

<u>SiQi Zhou¹</u>, Andriy Sarabakha², Erdal Kayacan³, Mohamed K. Helwa¹, and Angela P. Schoellig¹

¹ Dynamic Systems Lab, University of Toronto Institute for Aerospace Studies

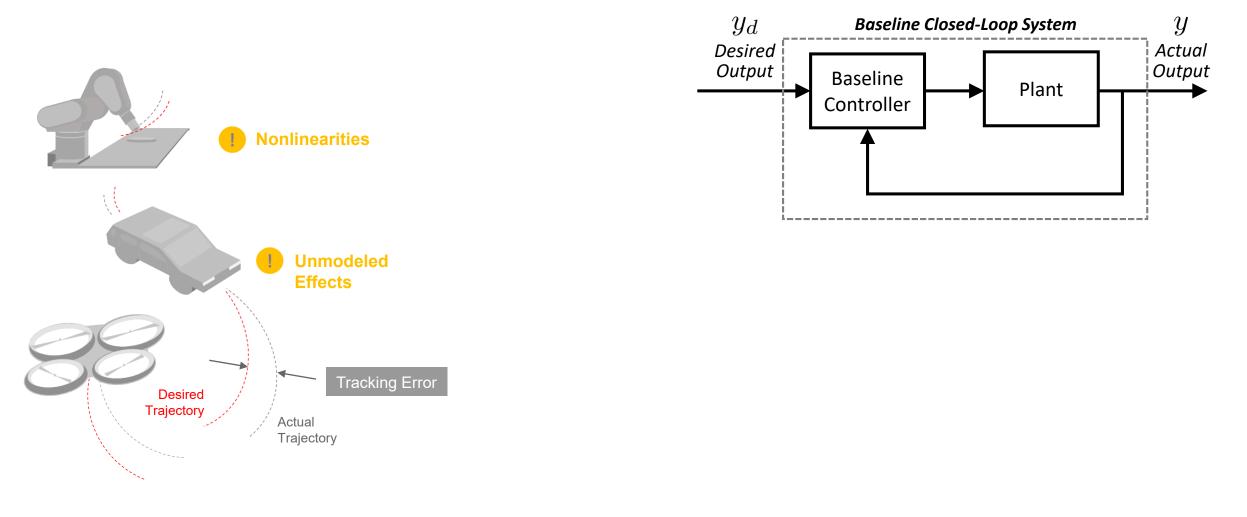
² School of Mechanical and Aerospace Engineering, Nanyang Technological University

VECTOR

³ Department of Engineering, Aarhus University

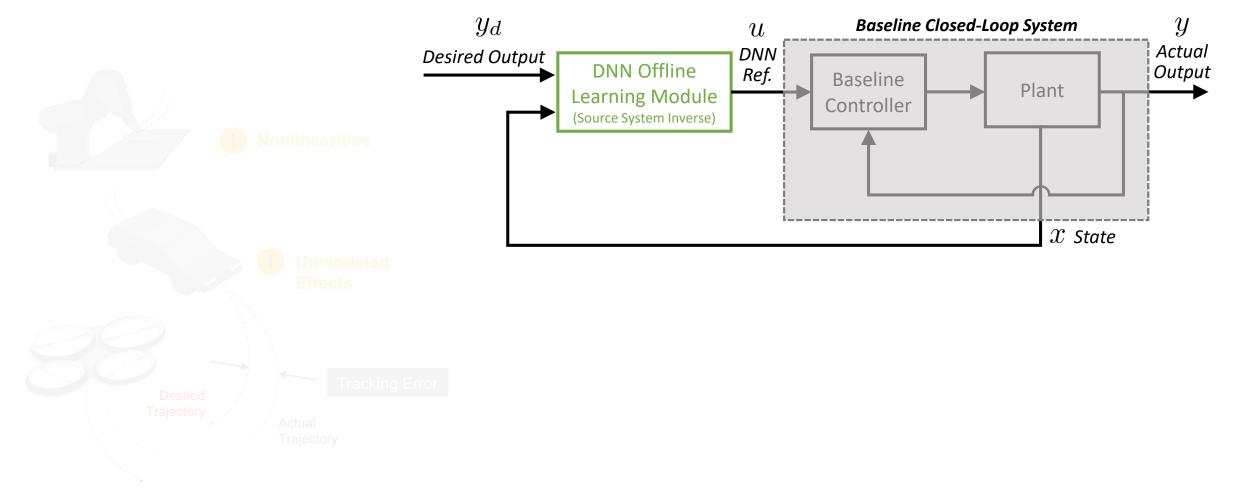
Introduction

Designing control systems for high-accuracy tracking can be challenging



Introduction

Neural networks as add-on blocks to enhance 'black-box' systems

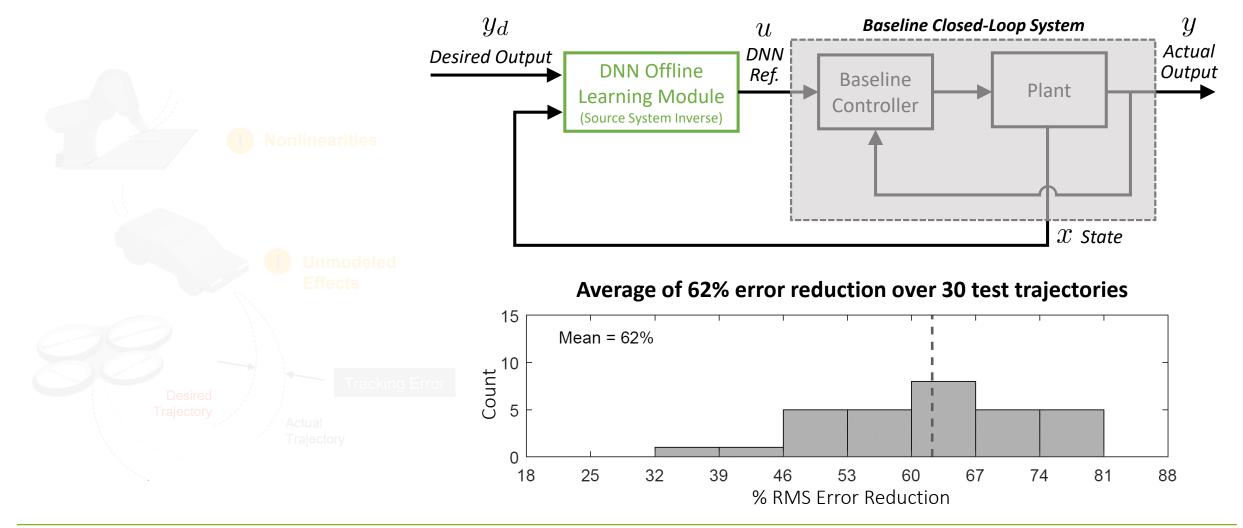


Note: If the video on previous slide has a problem, the full version of the video can be viewed here:

https://youtu.be/C_teLkJDq3Y

Introduction

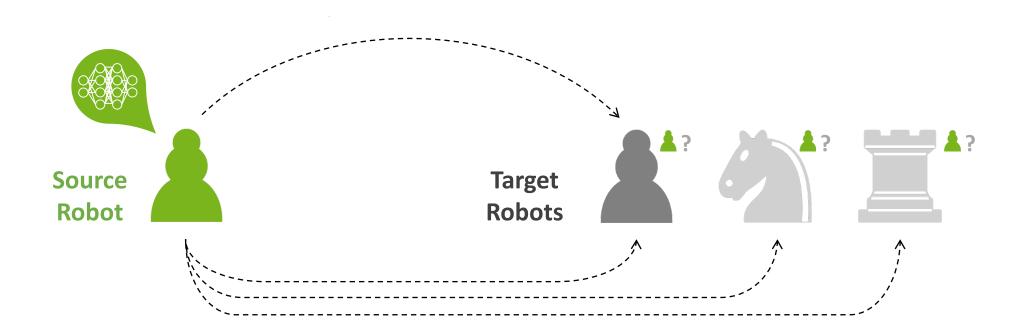
Neural networks as add-on blocks to enhance 'black-box' systems



Institute for Aerospace Studies UNIVERSITY OF TORONTO

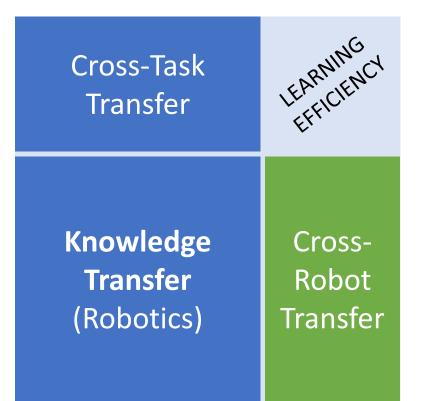
What if we have a team of robots with different dynamics?

Research Question



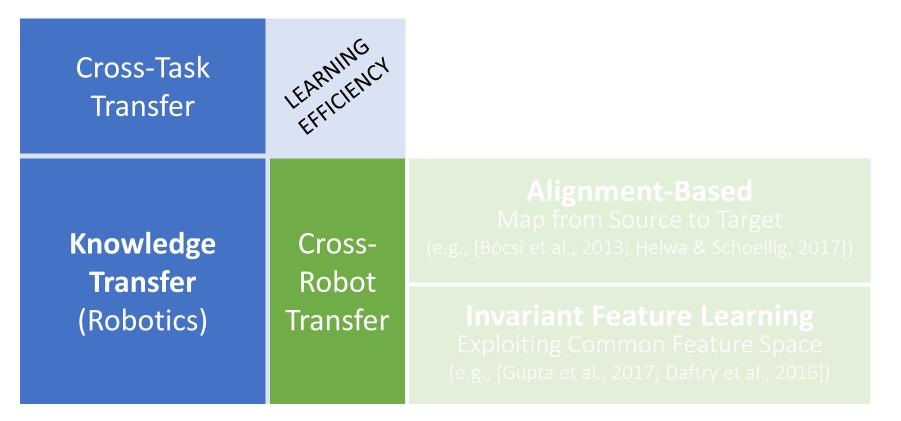
Transfer experience to accelerate learning on new tasks or for new robots

Knowledge transfer: Leverage existing data or learned experience to accelerate or improve subsequent learning



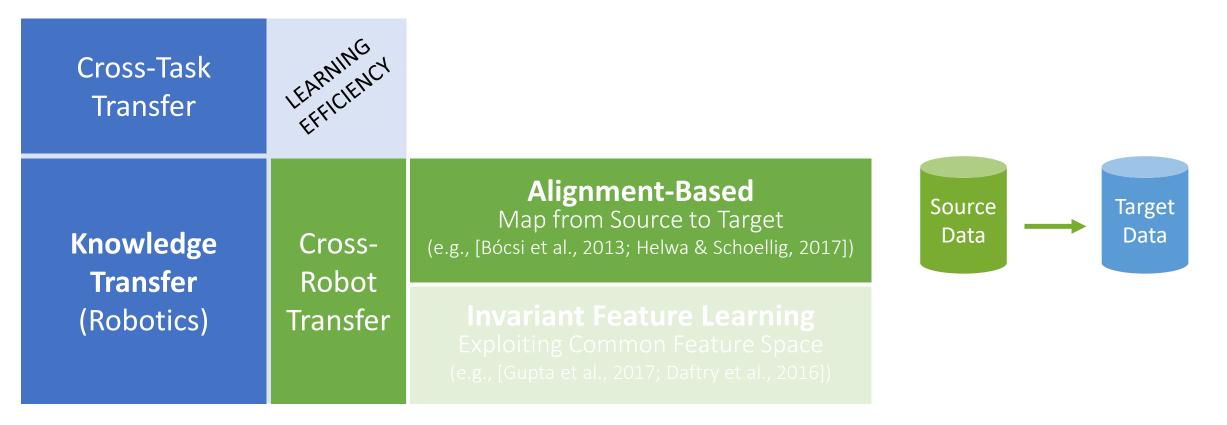
Approaches for transferring data across robots

Knowledge transfer: Leverage existing data or learned experience to accelerate or improve subsequent learning



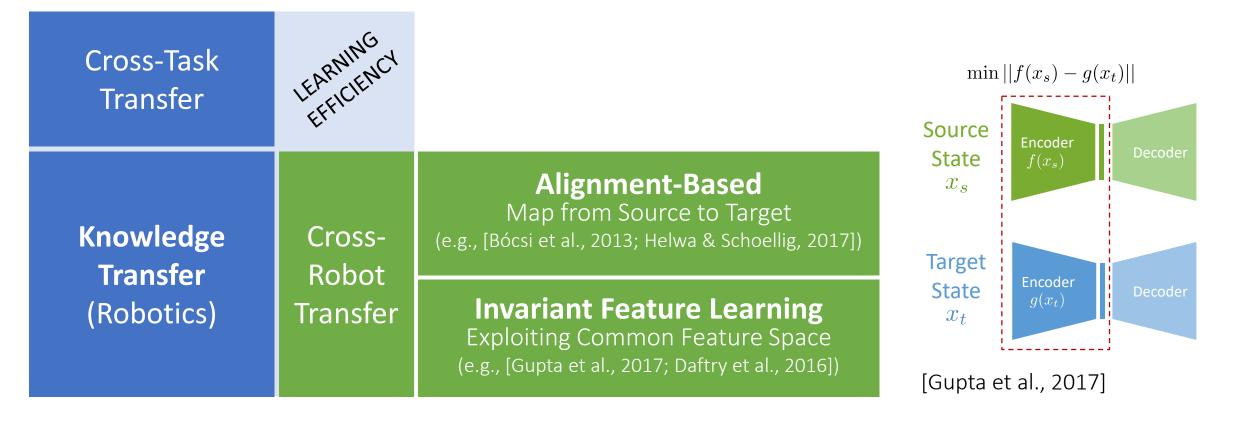
Approaches for transferring data across robots

Knowledge transfer: Leverage existing data or learned experience to accelerate or improve subsequent learning



Approaches for transferring data across robots

Knowledge transfer: Leverage existing data or learned experience to accelerate or improve subsequent learning



improve subsequent learning LEARNING FFICENCY • Sim-to-Real (e.g., [Marco et al., 2017]) nterests Related Cross-Task • Meta-Learning (e.g., [Finn et al., 2017]) • Modularity (e.g., [Devin et al., 2017]) Transfer **Alignment-Based** Map from Source to Target Knowledge Cross-(e.g., [Bócsi et al., 2013; Helwa & Schoellig, 2017]) Transfer Robot **Invariant Feature Learning** (Robotics) Transfer Exploiting Common Feature Space (e.g., [Gupta et al., 2017; Daftry et al., 2016])

Related Literature

Maximizing learning efficiency on physical robots shares a broader interest

Knowledge transfer: Leverage existing data or learned experience to accelerate or

Contributions

- 1. Impromptu knowledge transfer (i.e., without additional a-priori data collection on the robots)
- 2. Stability analysis of transfer-enhanced system and its connection to system similarity (linear case)
- 3. Verification of the knowledge transfer approach with quadrotors impromptu tracking experiments

Problem definition

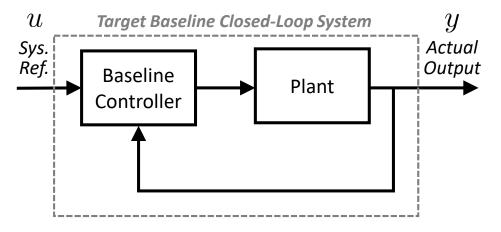
Setup: Consider closed-loop source and target systems represented in the following form

 $\begin{aligned} x(k+1) &= f(x(k)) + g(x(k)) \; u(k) \\ y(k) &= h(x(k)) \end{aligned}$

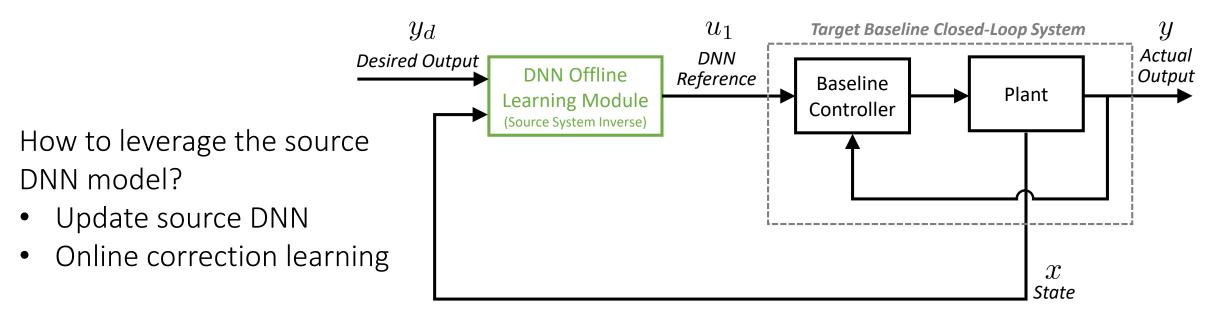
Assumption: The source and the target systems

- a) are minimum phase
- b) have well-defined and the same relative degree

Goal: To enhance the target baseline system with minimal amount of data (re)collection and training



Leveraging the DNN inverse module from the source system



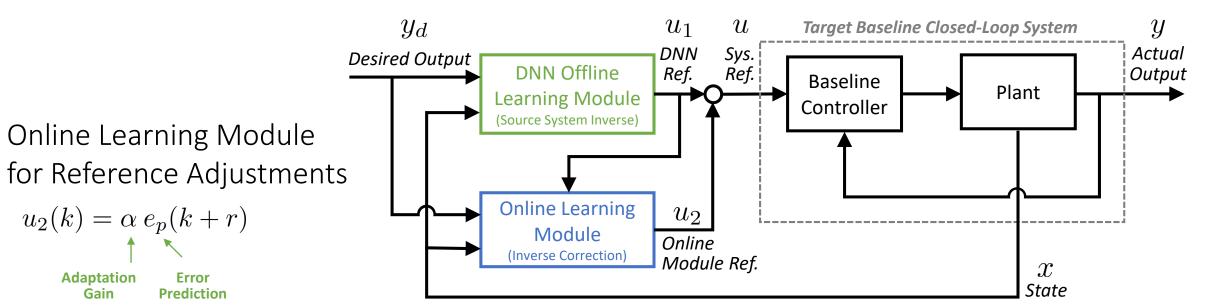
Offline Learning Module Approximates Inverse of the Source Robot System [CDC 17]

$$u_1(k) = \left(\mathcal{G}_s\left(x(k)\right)\right)^{-1} \left(y_d(k+r) - \mathcal{F}_s\left(x(k)\right)\right)$$

$$u_1(k) = F_{nn}(x(k), y_d(k+r))$$

approximated by a DNN (when \mathcal{F}_s and \mathcal{G}_s are unknown)

Using online learning to adapt to the differences



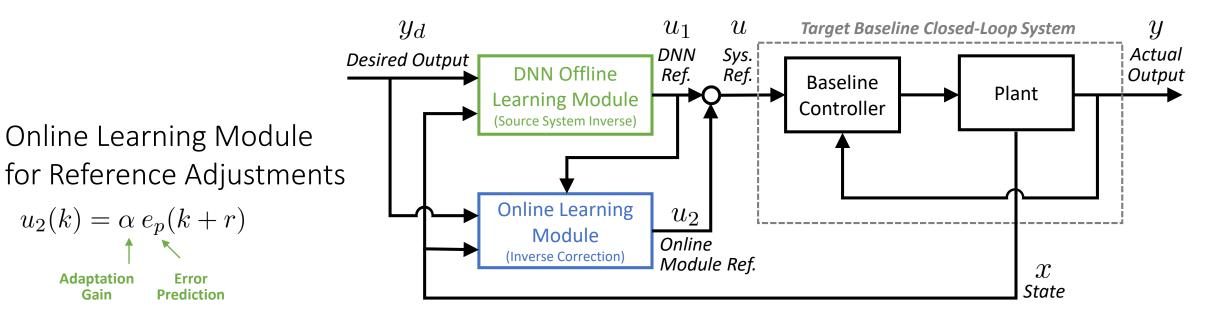
Ideal Expressions for Exact Tracking

$$\alpha^* = (\mathcal{G}_t(x(k)))^{-1} \qquad \frac{y_t}{2} \\ e_p^*(k+r) = y_d(k+r) - y_p(k+r)$$

$$u_p(k+r) = \mathcal{F}_t(x(k)) + \mathcal{G}_t(x(k)) u_1(k)$$

Predicted output of target system when u_1 is sent to the system

Using online learning to adapt to the differences



Ideal Expressions for Exact Tracking

Online Training Dataset (Based on Latest Observations)

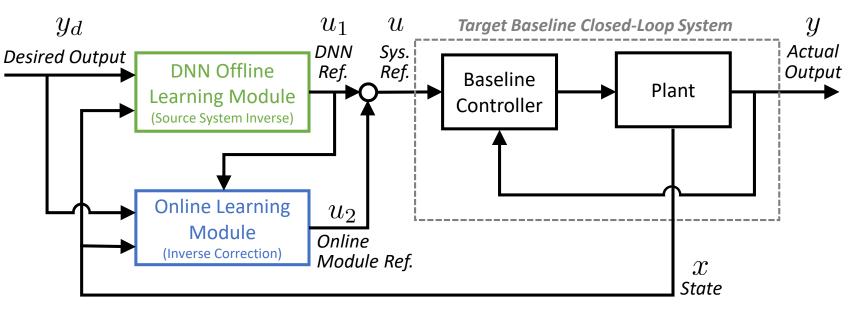
$$\alpha^* = (\mathcal{G}_t(x(k)))^{-1} \\ e_p^*(k+r) = y_d(k+r) - y_p(k+r)$$

$$e_p(k+r) = F_{gp}(x(k), y_d(k+r), u_1(k))$$

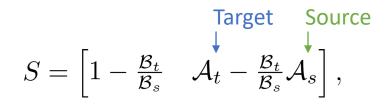
$$\mathcal{D} = \left\{ \left(x(p-r), y_d(p), u(p-r) \right); \left(y_d(p) - y(p) \right) \right\}_{p=k-N}^{p=k}$$

Characterizing similarity between the source and the target systems

Linear Case x(k+1) = Ax(k) + Bu(k) y(k) = Cx(k)Input-Output Equation y(k+r) = Ax(k) + Bu(k), where $A = CA^r$ and



Similarity Characterization



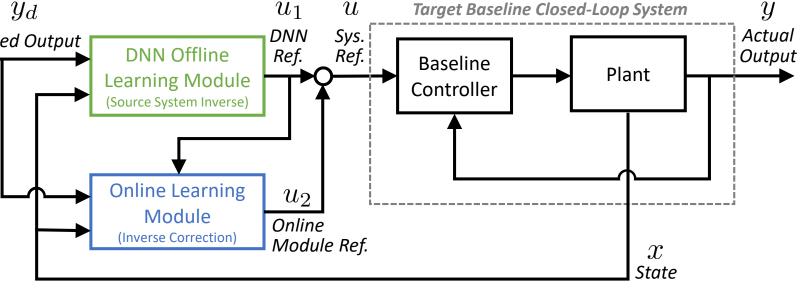
 \mathcal{A} = state-to-output gain \mathcal{B} = input-to-output gain

 $\mathcal{B} = CA^{r-1}B$

Higher similarity leads to higher tolerances for learning error

Assumptions 1. Input-to-state stable 2. Offline module corresponds to the source inverse $u_1(k) = \mathcal{B}_s^{-1} (y_d(k+r) - \mathcal{A}_s x(k))$

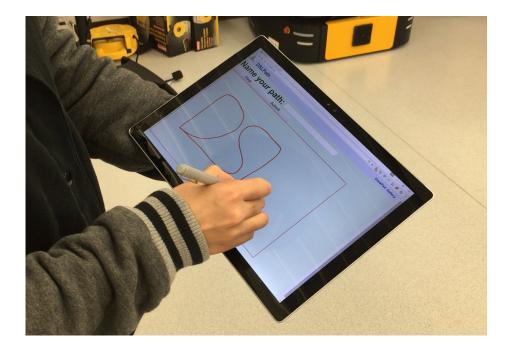
3. Error of the online learning module is bounded as $\Lambda \leq \beta_1 ||y_d(k+r)|| + \beta_2 ||x(k)|| + \beta_3$

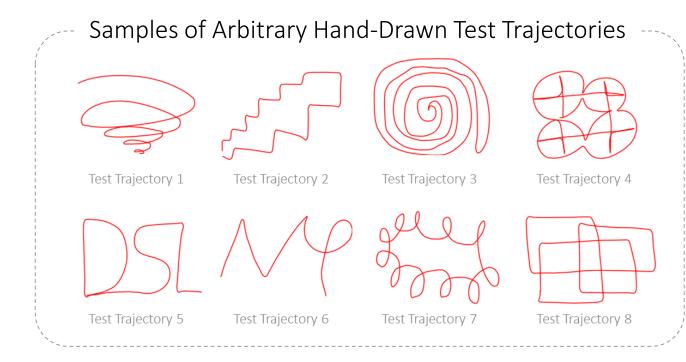


Stability of the Overall Learning-Enhanced Target System

 $\begin{aligned} |\alpha| \left(||S_2|| + \beta_2 \right) < \beta_4 / L_1 & \longrightarrow & L_1 ||\mathcal{A}_s / \mathcal{B}_s || < 1 \\ \text{when } \alpha \neq 0 & \text{(i.e., online learning module is not active)} \end{aligned}$

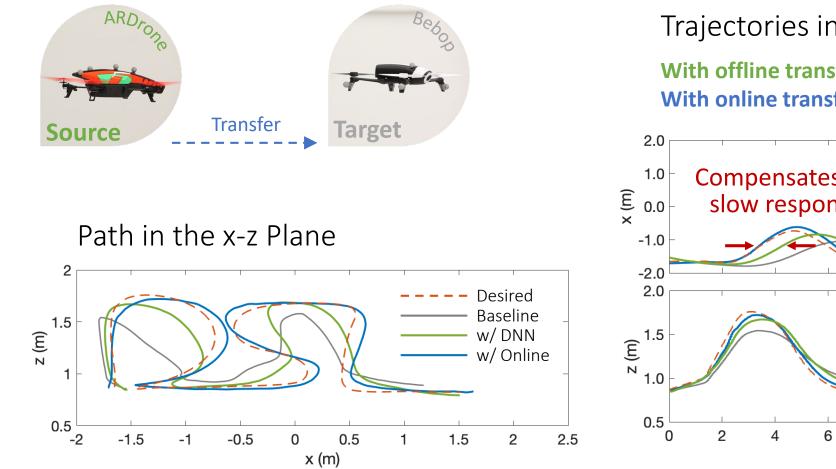
Experiments We test our online learning approach on arbitrary hand drawings





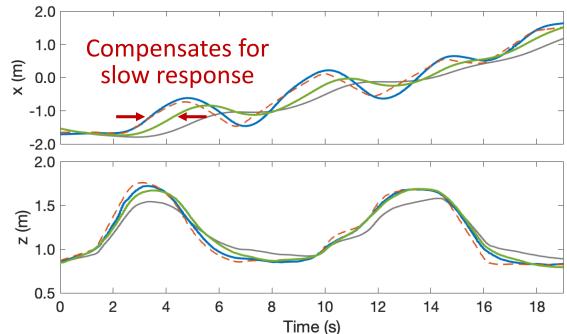
Experiments

We test our online learning approach on arbitrary hand drawings



Trajectories in the x and z Directions

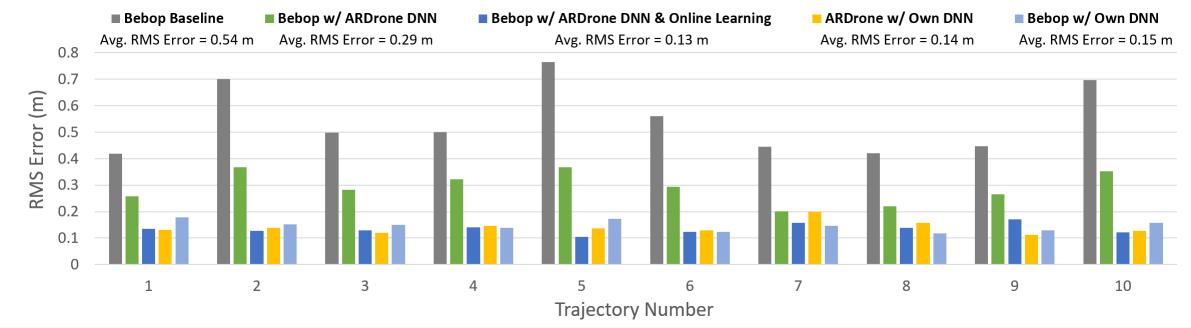
With offline transfer alone: 38% error reduction With online transfer: 67% error reduction



Experiments

We can effectively reduce the amount of data required for training robots

With offline transfer alone: 46% error reduction With online transfer: 74% error reduction (Comparable to fully-trained DNNs)



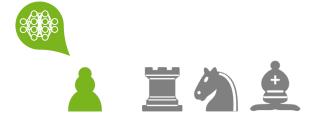
Summary

DNN inverse for tracking performance enhancement of single robots [ICRA17, CDC17]

Online learning approach for impromptu crossrobot transfer of previously trained DNNs

Connection between system similarity and stability of target system enhanced with online learning

Performance improvement of 74% with online learning in quadrotor impromptu tracking tasks



Summary

DNN inverse for tracking performance enhancement of single robots [ICRA17, CDC17]

Online learning approach for impromptu crossrobot transfer of previously trained DNNs

Connection between system similarity and stability of target system enhanced with online learning

Performance improvement of 74% with online learning in quadrotor impromptu tracking tasks

