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Introduction
Neural networks as add-on blocks to enhance ‘black-box’ systems






Note: If the video on previous slide has a problem, the full 
version of the video can be viewed here:
https://youtu.be/C_teLkJDq3Y

https://youtu.be/C_teLkJDq3Y
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Research Question

What if we have a team of robots with different dynamics?



8
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Related Literature
Transfer experience to accelerate learning on new tasks or for new robots

Knowledge transfer: Leverage existing data or learned experience to accelerate or 
improve subsequent learning
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Related Literature
Approaches for transferring data across robots
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Related Literature
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Related Literature
Maximizing learning efficiency on physical robots shares a broader interest
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• Meta-Learning (e.g., [Finn et al., 2017])
• Modularity (e.g., [Devin et al., 2017])
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Contributions

1. Impromptu knowledge transfer (i.e., without 
additional a-priori data collection on the robots)

2. Stability analysis of transfer-enhanced system and 
its connection to system similarity (linear case)

3. Verification of the knowledge transfer approach 
with quadrotors impromptu tracking experiments

1. Impromptu knowledge transfer (i.e., without 
additional a-priori data collection on the robots)

2. Stability analysis of transfer-enhanced system and 
its connection to system similarity (linear case)

3. Verification of the knowledge transfer approach 
with quadrotors impromptu tracking experiments

Source

Target
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Theoretical Results
Problem definition

Setup: Consider closed-loop source and target 
systems represented in the following form

Assumption: The source and the target systems 
a) are minimum phase
b) have well-defined and the same relative degree

Goal: To enhance the target baseline system with 
minimal amount of data (re)collection and training

Actual
Output
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Theoretical Results
Leveraging the DNN inverse module from the source system

Offline Learning Module Approximates Inverse of the Source Robot System [CDC 17]

State

Target Baseline Closed-Loop System

approximated by a DNN
(when       and       are unknown)

How to leverage the source 
DNN model?
• Update source DNN
• Online correction learning
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Theoretical Results
Using online learning to adapt to the differences

Online Learning Module 
for Reference Adjustments

Adaptation 
Gain

Error 
Prediction

Plant
DNN Offline 

Learning Module 
(Source System Inverse)

Online Learning 
Module 

(Inverse Correction)

Baseline 
Controller

DNN
Ref.

Online 
Module Ref.

State

Actual
Output

Sys.
Ref.

Desired Output

Target Baseline Closed-Loop System

Ideal Expressions for Exact Tracking
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Theoretical Results
Using online learning to adapt to the differences
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Theoretical Results
Characterizing similarity between the source and the target systems
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= state-to-output gain
= input-to-output gain

Similarity Characterization
Target Source

Linear Case

andwhere

Input-Output Equation
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Theoretical Results
Higher similarity leads to higher tolerances for learning error

Stability of the Overall Learning-Enhanced Target System
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Experiments
We test our online learning approach on arbitrary hand drawings

Samples of Arbitrary Hand-Drawn Test Trajectories
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Experiments
We test our online learning approach on arbitrary hand drawings

With offline transfer alone: 38% error reduction
With online transfer: 67% error reduction

Path in the x-z Plane

Trajectories in the x and z Directions

Transfer TargetSource

Desired
Baseline
w/ DNN
w/ Online

Compensates for 
slow response



With offline transfer alone: 46% error reduction
With online transfer: 74% error reduction
(Comparable to fully-trained DNNs)
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Experiments
We can effectively reduce the amount of data required for training robots

TargetTransfer TargetSource



Summary

DNN inverse for tracking performance 
enhancement of single robots [ICRA17, CDC17]

Online learning approach for impromptu cross-
robot transfer of previously trained DNNs

Connection between system similarity and stability 
of target system enhanced with online learning 

Performance improvement of 74% with online 
learning in quadrotor impromptu tracking tasks

DNN inverse for tracking performance 
enhancement of single robots [ICRA17, CDC17]

Online learning approach for impromptu cross-
robot transfer of previously trained DNNs

Connection between system similarity and stability 
of target system enhanced with online learning

Performance improvement of 74% with online 
learning in quadrotor impromptu tracking tasks
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